
Mach Learn (2008) 71: 55–88
DOI 10.1007/s10994-007-5044-4

A k-norm pruning algorithm for decision tree classifiers
based on error rate estimation

Mingyu Zhong · Michael Georgiopoulos ·
Georgios C. Anagnostopoulos

Received: 27 February 2007 / Revised: 10 December 2007 / Accepted: 12 December 2007 /
Published online: 4 January 2008
Springer Science+Business Media, LLC 2008

Abstract Decision trees are well-known and established models for classification and re-
gression. In this paper, we focus on the estimation and the minimization of the misclas-
sification rate of decision tree classifiers. We apply Lidstone’s Law of Succession for the
estimation of the class probabilities and error rates. In our work, we take into account not
only the expected values of the error rate, which has been the norm in existing research, but
also the corresponding reliability (measured by standard deviations) of the error rate. Based
on this estimation, we propose an efficient pruning algorithm, called k-norm pruning, that
has a clear theoretical interpretation, is easily implemented, and does not require a valida-
tion set. Our experiments show that our proposed pruning algorithm produces accurate trees
quickly, and compares very favorably with two other well-known pruning algorithms, CCP
of CART and EBP of C4.5.

Keywords Decision tree · Pruning · Law of succession

1 Introduction

Decision trees have been among the most wide-spread models in machine learning. Their
advantages include the interpretability of the model and the capability to handle both numer-
ical attributes and categorical attributes even with missing values. Like other approaches that

Editor: Hendrik Blockeel.

M. Zhong · M. Georgiopoulos (�)
School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL
32816, USA
e-mail: michaelg@mail.ucf.edu

M. Zhong
e-mail: myzhong@ucf.edu

G.C. Anagnostopoulos
Department of Electrical & Computer Engineering, Florida Institute of Technology, Melbourne, FL
32901, USA
e-mail: georgio@fit.edu



56 Mach Learn (2008) 71: 55–88

construct their models from data, a decision tree classifier over-adapted to the training set
tends to generalize poorly, when it is confronted with unseen instances. Therefore, it has
been widely accepted that the grown tree should be pruned.

A number of pruning algorithms have been proposed. They include Minimal Cost-
Complexity Pruning (CCP) of CART (Classification and Regression Trees; Breiman et al.
1984, p. 66), Error Based Pruning (EBP) of C4.5 (Quinlan 1993, p. 37), Minimum Er-
ror Pruning (MEP) (Niblett and Bratko 1986; Cestnik and Bratko 1991), Reduced Error
Pruning (REP), Pessimistic Error Pruning (PEP) (Quinlan 1999, for both REP and PEP),
MDL-Based Pruning (Mehta et al. 1995), Classifiability Based Pruning (Dong and Kothari
2001), pruning using Backpropagation Neural Networks (Kijsirikul and Chongkasem-
wongse 2001). Some of the pruning algorithms are briefly analyzed and empirically com-
pared in Esposito et al. (1997).

Through the analysis conducted in this paper we introduce a new pruning algorithm, re-
ferred to as k-norm pruning algorithm that features the following properties: it has a clear
theoretical interpretation based on error rate estimation and minimization, it does not re-
quire cross-validation or a separate validation set, it can find the optimal pruned tree within
one traversal of the tree, and, finally, it is simple and easy to implement. Furthermore, it
compares favorably with two well known pruning strategies, CCP and EBP, as well as other
pruning algorithms that have appeared in the decision tree literature.

The rest of this paper is organized as follows. In Sect. 2, we first present an overview
of some of the well-known misclassification rate estimation approaches, and this discus-
sion serves as a motivation for our estimation approach. Then, the necessary background
knowledge is covered in Sect. 3, which introduces the reader to decision trees and proba-
bility estimation. We elaborate on the theoretical analysis of the tree predictions in Sect. 4.
In particular, we apply Lidstone’s Law of Succession (LLS; Lidstone 1920) for the estima-
tion of averages and standard deviations of misclassification rates in decision tree classifiers.
Based on our analysis, we introduce the appropriate equations to estimate the tree’s predic-
tion accuracy and a pruning algorithm with the properties mentioned earlier. In Sect. 5, we
show the experimental results of our pruning algorithm by comparing it to two other classi-
cal algorithms, as well as other pruning algorithms. Furthermore, in Sect. 5, we emphasize
the advantages of the k-norm approach compared to alternative pruning methods, such as
CCP and EBP. We summarize our work in Sect. 6. In the appendices, we provided a de-
tailed example of our estimation approach to a well studied problem, as well as proofs of
our theorems.

2 Motivation of our work

It would be very easy to estimate the error rate on unseen data if a separate validation
set with sufficient size were given. When only the training set is given, one can sepa-
rate the training set into two parts, one for growing the tree and one for validating the
tree (see REP in Quinlan 1999 and its two successors in Kääriäinen and Elomaa 2003;
Kääriäinen et al. 2004 for example). In this case, however, the resulting tree does not utilize
all the training examples in its design. A better solution is to use a V -fold cross-validation
(Stone 1978), which has been successfully applied in CCP. Nevertheless, cross-validation is
usually a computationally expensive procedure. Most of the estimation approaches without
validation can be divided into two categories: Maximum Likelihood Estimation and Poste-
rior (Bayesian) Estimation. They are discussed in the next two subsections.



Mach Learn (2008) 71: 55–88 57

2.1 Maximum likelihood estimation

This approach seems to have attracted most of the research interest in error rate esti-
mation for decision tree classifiers. Although the maximum likelihood estimate cannot
be used by itself (otherwise the fully grown tree would have the highest estimated ac-
curacy), it can provide some useful information accompanied by Hoeffding’s Inequality
(Hoeffding 1963), Chernoff’s Inequality (Chernoff 1952), or the Binomial confidence in-
terval. Many researchers have experimented with different confidence levels and/or ap-
plying other inequalities to achieve better confidence bounds/intervals for the generaliza-
tion accuracy (Quinlan 1993; Mansour 1997; Freund 1998; Kearns and Mansour 1998;
Mansour and McAllester 2000; Kääriäinen and Elomaa 2003). Note that in EBP, the equa-
tion for computing the estimated error rate is not explicitly given; it can be found in Windeatt
and Ardeshir (2001) and turns out to be a Bernoulli one-sided Confidence Interval.

The above approaches are very straightforward. One of the most important advantages is
that they make no assumption on the distribution of the error rate. Some tree pruning algo-
rithms have been proposed that can finish within one traversal of the tree based on the upper
bound of the error rate. In applying these approaches, however, many researchers have side-
stepped an important issue related to the correct interpretation of Hoeffding’s/Chernoff’s
Inequalities, as pointed out recently in Vardeman and Jobe (2001, p. 342) it is not safe to
state that the generalization accuracy/error rate (expected error rate) has a specific inter-
val/bound at a certain probability by simply relying on the maximum likelihood estimates
of this error rate from a single training data set. Of course, we could still use the resulting
intervals/bounds as heuristics to estimate the unknown accuracy, but we must keep in mind
the limitations of such an estimate, as explained above.

To the best of our knowledge, we have not seen any statistically significant experimental
results (at least 1000 points in the database) showing that the above approaches can yield a
pruning algorithm superior to those using validation or those using posterior estimations. For
example, EBP tends to under-prune a tree as shown in Esposito et al. (1997). The behavior
of EBP can be explained by the theoretical analysis in Elomaa and Kääriäinen (2001), where
the authors proved that in EBP, a decision node will not be pruned unless all its immediate
children are either originally leaves or pruned to leaves.

2.2 Posterior estimation

Contrary to maximum likelihood estimation, posterior estimates assume that unknown pa-
rameters θ are random variables, and model them by a posterior joint probability density
function (abbreviated as PDF; denoted by f ) based on Bayesian theory:

f (θ|Observations) = f (Observations|θ)f (θ)

f (Observations)

= f (Observations|θ)f (θ)
∫

θ
f (Observations|θ)f (θ)dθ

. (1)

When θ stands for one or more probabilities and the observations are Bernoulli trials,
f (Observations|θ) is not difficult to compute. The apparent difficulty is the unknown prior
PDF f (θ). An explicit expression of this prior PDF must be assumed, and its properness
is usually difficult to verify. Nevertheless, this approach allows, at least, the production of
meaningful results.



58 Mach Learn (2008) 71: 55–88

A typical example is MEP (Niblett and Bratko 1986), where LLS (Lidstone 1920) is
used (see Sect. 3.2 for details). LLS can be derived by choosing the prior joint PDF to be
represented by the Dirichlet distribution (see (14)) and by choosing the posterior expected
value as the estimated value. In our paper, however, we will prove that MEP tends to under-
prune a tree: under a loose condition, the estimated error rate always drops if a split reduces
the number of training misclassifications by at least one, and thus will not be pruned (see
Theorem 2 in Sect. 4.4). We argue that the expected value alone does not serve as a good
estimate of the misclassification rate, because it does not provide us with any information
about the reliability of the estimate (analogous to the confidence interval in maximum like-
lihood estimation). For instance, an estimate in the range of 0.2 ± 0.01 is much better than
an estimate in the range of 0.2 ± 0.2 although they have same expected values (see Sect. 4.3
for a quantitative example).

2.3 k-norm estimate

In our work we choose to prune a tree by minimizing the estimated error rate, because we
desire not only the optimal pruned tree but also the performance prediction. We choose not
to rely on a validation set because validation may not be practical when the training set is
small and it is expensive to use when the training set is large. To the best of our knowl-
edge, there is no error estimation approach with a strong theoretical support that does not
require validation. Based on the references discussed above that are related to prior tree
pruning work, MEP appears to be the most promising approach for improvement: the poste-
rior estimations can yield interpretable results as long as the prior PDF is selected properly.
The Dirichlet distribution provides an explicit expression for the prior PDF and yields LLS,
which has been widely accepted in the statistical literature. Since expected values are not
good enough for error rate estimation, we also calculate the standard deviation of the error
rate. These considerations lead us in a natural way to the k-norm error rate pruning approach,
a generalization of the 2-norm error rate pruning that relies on estimation of averages and
standard deviations of error rates (see Sect. 4.4 that provides a quantitative explanation of
our motivation to rely on expected values and standard deviations of error rates to assess the
tree pruning decisions).

3 Preliminaries

This section provides some basic information on decision trees and probability estimation
approaches, needed for the rest of the paper.

3.1 Decision trees

A typical tree is shown in Fig. 1.1 To train a tree classifier, usually two phases are required.
One is the growing phase, where the tree is grown to a sufficient size, and the other is the
pruning phase, where the tree is pruned back to prevent over-training (Breiman et al. 1984).
In this paper, we do not focus on the growing phase but the pruning phase with the error
rate estimation. To pave our way for error rate estimation, we first discuss tree classification
from the perspective of a-posteriori probabilities.

1Note: The variables x1 to x4 represent the attributes, and y represents the variable whose value the tree will
be predicting. The nodes of the tree are designated by the index t ; the labels “Y” and “N” under each question
stand for the answers “Yes” and “No”, respectively, to the question.



Mach Learn (2008) 71: 55–88 59

Fig. 1 The graph of a decision
tree

3.1.1 Probabilistic view of tree classification

Let X denote an input instance that can be treated as a random vector, and let Cj represent
the event that X belongs to the j -th class (j = 1,2, . . . , J , where J is the number of classes).
To view the decision tree classification in a probabilistic way, we can express P [Cj |X] as

P [Cj |X] = P [Cj |Aroot,X], (2)

where root is the root of the tree, At is the event that node t is activated (receives the input
X). Since the root is always activated, Aroot is always true. For other nodes, At is defined
by the splits involving the ancestors of node t . For example, in Fig. 1, At1 = (x3 ≤ 1) and
At11 = (x3 ≤ 1, x1 ≤ 0) (the comma in the parentheses stands for intersection of events). For
most decision trees, we can rely on the following assumptions:

Partitioning Assumption: For any decision node d , the events {Ac|Ad, c ∈ Children(d)}
are mutually exclusive and collectively exhaustive, where Children(d) is the set of im-
mediate children of node d .

Determinacy Assumption: Given X, the path of X from the root to a leaf is deterministic,
that is, P [Ac|Ad,X] is either 0 or 1. For example, in Fig. 1, P [At11 |At1 ,X] = I [x1 ≤ 0],
where I [Φ] is the indicator function (1 if Φ is true and 0 otherwise).

Piece-wise Independence Assumption: At a leaf l, the class label is assumed to be inde-
pendent of X.

The Partitioning Assumption leads to the following equation: for any decision node d ,

P [Cj |Ad,X] =
∑

c∈Children(d)

P [Cj |Ac,Ad,X]P [Ac|Ad,X]. (3)

Note that a child of d is activated only if d is activated, that is, Ac implies Ad , or (Ac,Ad) =
Ac . Therefore, (3) can be rewritten as

P [Cj |Ad,X] =
∑

c∈Children(d)

P [Cj |Ac,X]P [Ac|Ad,X]. (4)



60 Mach Learn (2008) 71: 55–88

By recursion this telescopes to

P [Cj |X] =
∑

l∈Leaves

P [Cj |Al,X]P [Al|X]. (5)

Under the Piece-wise Independence Assumption, for any leaf l,

P [Cj |Al,X] ≈ P [Cj |Al]. (6)

P [Cj |Al] is unknown and has to be estimated (e.g., by Maximum Likelihood Estimation
or LLS). Let P ∗[Cj |Al] denote the estimated value of P [Cj |Al] (the asterisk representing
the estimated value throughout this paper). The predicted class probability P ∗[Cj |X] is es-
timated as follows:

P ∗[Cj |X] =
∑

l∈Leaves

P ∗[Cj |Al]P [Al|X]. (7)

Under the Determinacy Assumption, any X activates only one leaf (denoted by lX).
Therefore,

P ∗[Cj |X] = P ∗[Cj |AlX ]. (8)

Interestingly, whether the Maximum Likelihood Estimation or LLS is applied for com-
puting the estimated value P ∗[Cj |Al],

Label∗(X) = Label(lX) = arg max
j

P ∗[Cj |AlX ] = arg max
j

nj,lX , (9)

where nj,t is the number of training examples of class j in a node t that receives X (this
notation is also applicable to decision nodes).

The assumptions presented here are used for the proof of Theorem 1 and Corollary 1,
based on which the k-norm estimation algorithm is derived (see Sect. 4.2 and Sect. 4.4).
The equations, presented above, are used in the discussion that follows.

3.1.2 Discussion

There is a dilemma in tree induction regarding the under-training/over-training of the tree.
The estimation in (7) includes two approximations:

P [Cj |X] =
∑

l∈Leaves

P [Cj |Al,X]P [Al|X] ≈
∑

l

P [Cj |Al]P [Al |X], (10)

P [Cj |Al] ≈ P ∗[Cj |Al]. (11)

As the tree keeps growing and each leaf l occupies a smaller region in the attribute space, the
first approximation becomes more and more accurate, since P [Cj |X,Al] of (10) is substi-
tuted by the piece-wise constant function P [Cj |Al]. However, the estimation of P [Cj |Al]
actually turns out to be less reliable since fewer training examples are passed to l, and it
is the cause of why a fully grown tree usually exhibits poor generalization. The dilemma
can never be completely overcome, even if the Piece-wise Independence Assumption is dis-
carded and/or Lidstone’s Estimation is applied, because when fewer examples are given, the
approximation of P [Cj |X,Al] using any predefined model (such as the Gaussian PDF or
the uniform PDF) appears easier but is less reliable.



Mach Learn (2008) 71: 55–88 61

Fig. 2 Estimated Class probabilities obtained by CART for a 2-class Gaussian data-set. In the graph the true
class probability is shown, as well as the class probabilities estimated after the first split and for the fully
grown tree

An example is shown in Fig. 2, to illustrate our point that the estimation of class
probabilities becomes less reliable as the tree grows in size. We generated an artificial
Gaussian database with 2 classes (20 examples in each class) and one attribute X (X|C1 ∼
N (−1,1),X|C2 ∼ N (1,1); the two classes are plotted at different vertical locations only
for visual purpose). We used CART to grow a tree. Before any split (when the tree has only
one leaf), each estimated class probability has a constant value 0.5, giving no information for
the classification. After the first split, the estimation of P [Cj |X] is improved significantly,
especially for the region to the left of the split: the root-mean-square-error of the probability
estimate decreases from 0.43 to 0.19, and the error rate decreases from 0.5 to 0.086. For the
fully grown tree (where each leaf is pure), the estimated class probability has many spikes
and it does not look better than the estimated class probability with only the first split; for
the fully grown tree the root-mean-square-error of the probability estimate increases from
0.19 to 0.22, and the error rate increases from 0.086 to 0.091.

Since growing the tree to its maximum size might not be beneficial, there is a point
at which we should stop growing the tree. Nevertheless, during the growing phase it is
difficult to foresee how many more splits under a newly created leaf will be finally found
and whether or not these splits will be useful. From this point of view, we also support the
widely accepted approach of growing the tree to its maximum size and then pruning the tree,
for it allows us to find all candidate pruned trees. Now, our main problems are (1) how to
evaluate a candidate pruned tree, because the true PDF is seldom known, and (2) how to find
the optimal pruned tree efficiently, as there are usually too many candidate pruned trees to
choose from. These problems are addressed in Sect. 4.

3.2 Lidstone’s law of succession

An important issue in decision trees, as well as many other classifiers, is the estimation
of the class probabilities given a set of training instances. To be more general, let Φh

(h = 1,2, . . . ,H) be H mutually exclusive and collectively exhaustive events. Let ph denote
P [Φh] and Nh denote the number of occurrences of Φh in N independent trials. Obviously,
Nh is a random variable. Suppose that in N independent trials we observed nh occurrences
of Φh (an example would be observing nj out of N training instances that belong to class j ).
Our task here is to estimate p1,p2, . . . , pH given n1, n2, . . . , nH .



62 Mach Learn (2008) 71: 55–88

LLS represents posterior estimation, in which ph is estimated by p∗
h, where

p∗
h = E[ph|n1, . . . , nH ] = nh + λ

N + λH
, (12)

where λ is a predefined non-negative parameter. In statistics, a widely used value for λ is
0.5 (the value 0.50922 is suggested in Krichevskiy 1998).

LLS is a generalization of Laplace’s Law of Succession (the latter fixes λ to 1). LLS
is more widely used in the statistical literature (Ristad 1995), and also applied in Machine
Learning, such as in Naive Bayes Classifiers (Kohavi et al. 1997, and note that in the litera-
ture, Lidstone’s Law is sometimes referred to as Laplace’s Law). However, most researchers
simply compute the expected value according to (12). In Theorem 2, we will show that the
expected value (1-norm) is not sufficient to correctly evaluate a tree’s accuracy on unseen
data (the theorem shows that any effective split decreases the 1-norm error rate; consequently
any effective split will not be eliminated if the 1-norm error rate is applied). In Sect. 4.3, we
will also give an example where an end-cut improves the expected accuracy; this example
shows that by considering both the expected accuracy and the average standard deviation of
the accuracy we are able to identify redundant splits.

In Lidstone’s Estimation, it is assumed (Good 1967, 1965) that the prior distribution of
ph is the Dirichlet distribution, denoted by

(p1, . . . , pH ) ∼ Dir(λ,λ, . . . , λ), (13)

or

f (p1, . . . , pH ) = αδ

(

1 −
H∑

h=1

ph

)
H∏

h=1

pλ−1
h I [ph ≥ 0], (14)

where α is a constant so that the integral of f (p1, . . . , pH ) is unity, and δ(x) is Dirac’s delta
function (or unit impulse function; Zemanian 1987) such that

∫ ∞

−∞
g(x)δ(x)dx = g(0), (15)

for all continuous functions g. Dirac’s delta function ensures that the ph’s sum up to one,
for the events Φh’s are collectively exhaustive.

Based on (14), it has been proved that the posterior probabilities also follow the Dirichlet
distribution in Good (1965). In particular,

(p1, . . . , pH |n1, . . . , nH ) ∼ Dir(n1 + λ, . . . , nH + λ). (16)

One can also easily prove that

(ph,1 − ph|n1, . . . , nH ) ∼ Dir(nh + λ,N − nh + λ(H − 1)). (17)

This result leads to the following (Good 1967, (20)):

E[pk
h|n1, . . . , nH ] =

k−1∏

m=0

nh + λ + m

N + λH + m
, (18)

E[(1 − ph)
k|n1, . . . , nH ] =

k−1∏

m=0

N − nh + λ(H − 1) + m

N + λH + m
. (19)



Mach Learn (2008) 71: 55–88 63

The standard deviation of ph can be computed as

σ [ph|n1, . . . , nH ] =
√

E[p2
h|n1, . . . , nH ] − E[ph|n1, . . . , nH ]2. (20)

Equation (19) is the basis of our proposed error rate estimation and the corresponding k-
norm pruning algorithm.

Note that (p1, . . . , pH ) are assumed symmetric here, according to their equal parameters
in the prior joint PDF in (14). In tree classification, we are consistent if we treat the events
“X has class label j” as symmetric, which means that we have no bias towards any class
before seeing any training examples. In contrast, we are inconsistent if we treat the events
“X is correctly classified” versus “X is misclassified” as symmetric, for these events depend
on the leaf predictions.

4 Error rate estimation—k-norm pruning algorithm

As explained in Sect. 2.3, we apply LLS to estimate the error rates. We also rely on
the assumptions (Partitioning, Determinancy and Piece-Wise Independence) discussed in
Sect. 3.1.1.

4.1 Terminology

We now estimate the misclassification rate P [Err|X] of a tree, by treating P [Err|X] as a
random variable. In the rest of this section we use expected values extensively, and thus it is
worth mentioning first that the expected value here is the integral across two random factors:
the random input attribute vector X and all the unknown probabilities P (class probabilities
P [Cj |At ], child probabilities P [Ac|Ad ], etc.). That is, for any random variable Q,

EX[Q] =
∫

Qf (X)dX, (21)

EP[Q] =
∫

Qf (P)dP, (22)

E[Q] = EX[EP[Q]] = EP[EX[Q]], (23)

where f (P) is actually a posterior PDF (given the observations with the training examples;
we omit this condition for simplicity, because it is common among all equations in the rest
of this paper). Similarly, the standard deviations are defined as follows:

σP[Q] =
√

EP[Q2] − EP[Q]2, (24)

σ [Q] =
√

E[Q2] − E[Q]2. (25)

When conditions are involved, we put the conditions into the subscript. For example,

EX|At [Q] =
∫

Qf (X|At)dX. (26)

Note that P is composed of all probabilities, including P [Cj |At ] for any node t , and the
expression “P [Cj |At ]|At ” is not meaningful. Therefore, we treat P as independent of At

and compute the expected value of a random variable within a node t as

Et [Q] = EP[EX|At [Q]], (27)



64 Mach Learn (2008) 71: 55–88

where the superscript t represents the condition “|At ”. When Q has the same subscript t , we
omit the superscript t in Et [Q]. For example, the expected error rate of the sub-tree rooted
at t is represented by E[rt ] rather than Et [rt ], because this expected value must, of course,
be computed with the assumption that At is true.

4.2 Partitioning theorem

Theorem 1 For any decision node d and any natural number k, under the Partitioning
Assumption and the Determinacy Assumption, the following expression is valid:

EX|Ad
[rk

d ] =
∑

c∈Children(d)

EX|Ac [rk
c ]P [Ac|Ad ], (28)

where rt is the error rate of node t , defined as follows:

rt = P [Err|At,X]. (29)

Proof The proof of Theorem 1 is provided in Appendix B. �

Note that EX|Ad
[Q] represents only the expectation across X, and thus both sides in (28)

are still random variables.

Corollary 1 Under the Partitioning Assumption and the Determinacy Assumption, as well
as the assumption that rc and P [Ac|Ad ] are independent random variables for each child
node c of the decision node d , the following expression is valid:

E[rk
d ] =

∑

c∈Children(d)

E[rk
c ]EP[P [Ac|Ad ]]. (30)

This corollary can be proved by computing the expected values with respect to P of both
sides of (28), according to (27). Apparently, the error rate of the tree is equal to rroot. This
corollary indicates that the error rate of a tree (or a sub-tree) can be estimated recursively.
We apply LLS to obtain explicit expressions for error rate estimation, as follows.

For a leaf l, under the Piece-wise Independence Assumption (6),

E[rk
l ] = E[(1 − P [CLabel(l)|Al,X])k] ≈ E[(1 − P [CLabel(l)|Al])k]. (31)

Recall that all expected values here are conditional, based on the training examples. It is
well known that to estimate the probabilities of a set of mutually exclusive and collectively
exhaustive events with N independent trials, the numbers of occurrences of the events are
sufficient. Therefore, the condition “given training examples” can be replaced with “given
nj,l”. According to (19), by defining H = J and pj = P [Cj |Al], j = 1,2, . . . , J , we have

E[rk
l ] ≈ E[(1 − P [CLabel(l)|Al])k]

=
k−1∏

i=0

nLabel(l),l + λ(J − 1) + i

nl + λJ + i

=
k−1∏

i=0

nl − maxj nj,l + λ(J − 1) + i

nl + λJ + i
. (32)



Mach Learn (2008) 71: 55–88 65

For a decision node d , since P includes P [Ac|Ad ], the other probabilities in P do not
contribute to EP[P [Ac|Ad ]] (because EY [EZ[Z]] = EZ[Z] for any two random variables Y

and Z even if they are dependent on each other). Applying LLS again, we get

EP[P [Ac|Ad ]] = nc + η

nd + ηKd

, (33)

where Kd is the number of immediate children of decision node d , nt is the number of
training examples covered by node t , and η has an analogous functionality as λ (we use
a different notation because λ has been used to denote the parameter in (32), and here we
allow η to take a different value). For simplicity, from now on, we use P ∗[Ac|Ad ] to denote
EP[P [Ac|Ad ]].

Using Corollary 1, the standard deviation of the error rate can be computed as follows:

E[rd ] =
∑

c∈Children(d)

E[rc]P ∗[Ac|Ad ], (34)

E[r2
d ] =

∑

c∈Children(d)

E[r2
c ]P ∗[Ac|Ad ], (35)

σ [rd ] =
√

E[r2
d ] − E[rd ]2. (36)

It is important to note that generally,

σ [rd ] 	=
∑

c∈Children(d)

σ [rc]P ∗[Ac|Ad ]. (37)

Please see Sect. 4.3 for a detailed application of the above equations.

4.3 An example

Consider now a more specific example of a 2-class classification problem for which a binary
tree is built. Suppose a decision node d of the tree receives 98 training examples of class 1
and 1 example of class 2, and its split separates the two classes. Assume λ = η = 0.5.
According to (6), before splitting,

E[rd ] = EP[EX[P [Err|Ad,X]]] = EP[P [Err|Ad ]]
= EP[1 − P [C1|Ad ]] = 1 + 0.5

99 + 0.5 × 2
= 0.015000, (38)

E[r2
d ] = EP[EX[P [Err|Ad,X]2]] ≈ EP[P [Err|Ad ]2]

= EP[(1 − P [C1|Ad ])2] = (1 + 0.5)(1 + 0.5 + 1)

(99 + 0.5 × 2)(99 + 0.5 × 2 + 1)

= 0.00037129, (39)

σ [rd ] =
√

E[r2
d ] − E[rd ]2 ≈ 0.012095. (40)

After splitting, for the left child c1,

E[rc1 ] = 0 + 0.5

98 + 0.5 × 2
= 0.0050505, (41)



66 Mach Learn (2008) 71: 55–88

E[r2
c1

] ≈ (0 + 0.5)(0 + 0.5 + 1)

(98 + 0.5 × 2)(98 + 0.5 × 2 + 1)
= 0.00075758, (42)

P ∗[Ac1 |Ad ] = 98 + 0.5

99 + 0.5 × 2
= 0.98500. (43)

After splitting, for the right child c2,

E[rc2 ] = 0 + 0.5

1 + 0.5 × 2
= 0.25000, (44)

E[r2
c2

] ≈ (0 + 0.5)(0 + 0.5 + 1)

(1 + 0.5 × 2)(1 + 0.5 × 2 + 1)
= 0.12500, (45)

P ∗[Ac2 |Ad ] = 1 + 0.5

99 + 0.5 × 2
= 0.015000. (46)

For the sub-tree,

E[rd ] = 0.0050505 × 0.985 + 0.25 × 0.015 = 0.0087247, (47)

E[r2
d ] ≈ 0.00075758 × 0.985 + 0.125 × 0.015 = 0.0019496, (48)

σ [rd ] ≈
√

0.0019496 − (0.0087247)2 = 0.04328. (49)

Although the expected value of the error rate decreases by 0.006275 after the split, the
average standard deviation increases by 0.03119, which is almost 5 times larger than the
decreased amount in the expected value. Thus, while the expectation of the error is lower,
there is a relatively high probability that the true error has increased, rather than decreased.
There is little evidence that this split will improve the generalization.

4.4 k-norm estimation in tree pruning—k-norm pruning algorithm

When enough (thousands of) samples are given, one does not systematically expect higher
values than the expected value. In a tree, however, no matter how many samples are initially
given, after splitting there might be tree leaves that contain only a few samples. In this case,
the expected values calculated at these leaves are not reliable, as shown in the previous exam-
ple. Therefore, it is reasonable to consider combining the expected value and the standard de-
viation to estimate the error rate. For example, as shown in Sect. 4.3, E[r2] = E[r]2 +σ [r]2

can be used to identify redundant splits, and its square root (2-norm) can serve as our error
rate estimate. In general, k-norm estimation in tree pruning, on which the k-norm pruning
algorithm is based, estimates ‖r‖k = k

√
E[|r|k] (which is equal to k

√
E[rk] because in this

paper r ≥ 0). Some observations, pertinent to k
√

E[rk] value, are listed below:

1. When k is fixed, minimizing the k-norm error ‖r‖k is equivalent to minimizing the k-th
moment E[rk]. According to Theorem 1, the moment can be computed recursively, by
starting at the leaves of the tree and moving upwards towards the root of the tree; the
error rate of the sub-trees under any decision node can be summed up independently. To
optimize any sub-tree rooted at d , we can first optimize the sub-trees under d and then
optimize the node d (by deciding whether to replace it with a leaf), which guarantees
global optimality. This property is very important for our k-norm pruning algorithm.

2. When k = 2, ‖r‖2 = √
E[r]2 + σ [r]2 takes both the expected value and the standard

deviation into account. When k > 2, other statistical information such as skewness and/or
kurtosis is also included.



Mach Learn (2008) 71: 55–88 67

input : a tree rooted at node t

output: the optimal pruned tree (modified from the input),
and its k-th moment error rate (returned value of this function)

Compute Rleaf according to (32);1

if t is a decision node then2

Compute Rtree = ∑
c∈Children(t) EP[P [Ac|Ad ]]PruneTree (c) according to (33);3

if Rtree < Rleaf − ε (or k
√

Rtree < k
√

Rleaf − ε) then4

return Rtree;5

end6

Replace the subtree rooted at t with a leaf;7

end8

return Rleaf ;9

Algorithm 1: PruneTree

By using the k-norm error rate estimation, in order to get the optimally pruned tree at t ,
we can first get the optimally pruned trees below t , and then consider whether pruning t

yields a lower k-norm error rate. The algorithm is shown in Algorithm 1.
In the rest of this paper, we choose k = 2 for the k-norm estimation, since it takes into

account both the expected value as well as the standard deviation of the error rate. We do
not use higher than k = 2 values for the error rate estimation, because in this paper, we do
not see the benefits of taking the skewness into account. Moreover, there is a potential risk
for higher values of k: for any random variable Q, the estimation of ‖Q‖k , using a finite set
of examples, becomes more sensitive to noise and computational errors, which can also be
seen in the approximation in (32). We do not use k = 1 for the k-norm estimation because
it is too optimistic as an error rate estimate, which is empirically verified in Esposito et al.
(1997), and theoretically demonstrated by the following theorem.

Theorem 2 Under the Partitioning Assumption and the Determinacy Assumption, if 0 ≤
η ≤ λJ , λ ≤ 1/(Kt − 1)(J − 1) at a node t , then any effective tree split decreases the 1-
norm error rate. A tree split is called effective if it reduces the training misclassifications.

Proof The proof can be found in Appendix C. �

Since MEP can be represented by the 1-norm pruning with η = 0 and flexible λ, we see
that it never prunes any end-cuts (one that separates only a few training examples from the
rest), as long as they are effective. See Sect. 4.3 for example.

4.5 Application in tree prediction

Given an input X, we can predict not only the class label but also an estimated error rate for
this prediction. Here X is deterministic and therefore we only compute EP[rk] where r =
P [Err|X]. We also apply the k-norm estimation here. Under the assumptions of Sect. 3.1.1,
only one leaf lX receives X. Therefore,

EP[rk] = EP[(1 − P [CLabel∗(X)|X,AlX ])k]
≈ EP[(1 − P [CLabel(lX)|AlX ])k]



68 Mach Learn (2008) 71: 55–88

=
k−1∏

i=0

nlX − maxj nj,lX + λ(J − 1) + i

nlX + λJ + i
. (50)

In practice, there are two reasonable ways to output the estimated error rate: 1) Output the
2-norm error rate ‖r‖2 = √

EP[r2] only, or 2) Output EP[r] and σP[r] = √
EP[r2] − EP[r]2,

the latter (average standard deviation) representing the reliability or a range in the form of
0.6 ± 0.1; the smaller the range is, the more confident we are when using the expected value
to estimate the generalization error rate, meaning that the expected value is more reliable.

5 Experiments

In this section, we compare our proposed 2-norm pruning algorithm with two other classical
pruning algorithms: CCP of CART and EBP of C4.5.

5.1 Test procedure

We compare the algorithms with respect to three metrics: the elapsed time in pruning (com-
putational complexity of pruning), the accuracy of the pruned tree, and the resulting tree
size. Reducing the tree size is not our goal, and it is shown here only as a companion mea-
sure to the accuracy comparison.

In our experiments, each database is separated into a training set and a test set. To reduce
the randomness of the partitioning of the data in a training and test set, we repeated the
experiments 20 times with different partitioning each time. To ensure that the classes in
the training set have approximately the same distribution as in the test set, we shuffle the
examples before partitioning.

Apparently, if the random partitioning is simply repeated, some of the examples might
appear more often in the training set than in the test set or the opposite. Although V -fold
cross-validation can address this problem, we cannot control the training ratio (the propor-
tion of the training set) when V is fixed, and this ratio is large when V is high. For example,
when V = 10, the training set is 9 times larger than the test set, with 90% training ratio.
Therefore, we slightly digress from the cross-validation approach, as explained in the fol-
lowing: We partition each database only once into 20 subsets with approximately equal size.
In the i-th (i = 0,2, . . . ,19) test, we use subsets i mod 20, (i + 1) mod 20, . . . , (i + m − 1)

mod 20 for training and the others for testing, where m is predefined (e.g., if the training
ratio is 5%, m = 1; if the training ratio is 50%, m = 10). As illustrated in Fig. 3, this ap-
proach guarantees that each example appears exactly m times in the training set and exactly
20 − m times in the test set. Furthermore, it allows the training ratio to vary. The procedure
is delineated in Algorithm 2.

Note that a training ratio of 5% is a challenging setting (very few training cases) for which
the robustness of the algorithms can be examined. Furthermore increasing the training set
size from 5% to 50% (a 10-fold increase of the training cases) allows us to investigate how
well the pruning algorithms scale with a 10-fold increase of training data size.

To make a fair and justified comparison on speed, we have implemented all the algo-
rithms in C++ as a Matlab MEX file, and we ran all experiments on the same computer
(Intel Pentium 4 at 2.59 GHz, 1.5 GB Memory, and Windows XP). No file I/O, screen dis-
play, or keyboard input, but only number crunching is timed. We used a high resolution
timer whose result is accurate to one microsecond.



Mach Learn (2008) 71: 55–88 69

Fig. 3 Visualization of the followed procedure to partition the databases into training and test sets

foreach Database D do1

Shuffle the examples in D;2

Partition D into 20 subsets D0,D1, . . . ,D19;3

for m = 1, 10 do4

for i = 0 to 19 do5

Set TrainingSet = ⋃m−1
j=0 D(i+j) mod 20;6

Set TestSet = D − TrainingSet;7

Grow a full tree with CART and TrainingSet;8

Use CCP/EBP/2-norm for pruning the tree;9

Evaluate each pruned tree with TestSet;10

end11

end12

end13

Algorithm 2: Experimental procedure to create training and test subsets from a data-
base set

5.2 Databases

To ensure that our experimental results are statistically significant, we require that the data-
bases must have at least 2000 examples. Furthermore, according to the Determinacy As-
sumption, our algorithm does not handle missing values at this time, and therefore we
choose only the databases without missing values. The statistics of the databases that we
experimented with are listed in Table 1.

The databases g#c## are Gaussian artificial databases. The acronym g2c15 means 2
classes and 15% minimum error rate (defined as the error rate of the Bayes optimal clas-
sifier). These databases have two attributes x and y. In each class, x and y are independent
Gaussian random variables, whose means vary among the classes. The other databases are
benchmark databases obtained from the UCI Repository (Newman et al. 1998), according
to our criteria mentioned in the beginning of this subsection.



70 Mach Learn (2008) 71: 55–88

Table 1 Statistics of the Databases used in our experiments

Database Examples Numerical
Attributes

Categorical
Attributes

Classes Majority
Class %

abalone 4177 7 1 3 34.6

g2c15 5000 2 0 2 50.0

g2c25 5000 2 0 2 50.0

g6c15 5004 2 0 6 16.7

g6c25 5004 2 0 6 16.7

kr-vs-kp 3196 0 36 2 52.2

letter 20000 16 0 26 4.1

optdigits 5620 64 0 10 10.2

pendigits 10992 16 0 10 10.4

satellite 6435 36 0 6 23.8

segment 2310 19 0 7 14.3

shuttle 58000 9 0 7 78.6

splice 3190 0 60 3 51.9

waveform 5000 21 0 3 33.9

5.3 Parameters

For the 2-norm algorithm, the η value is not critical and is set to 0.5. However, the parameter
λ affects the error rate estimate. When λ = 0, the estimated error rate is approximately the
training error rate, which results in under-pruning. When λ = ∞, the estimated error rate is
(J − 1)/J for all nodes and thus the tree will be pruned to only one node.

In our experiments, we set λ = λ0V/J , where λ0 is a constant and V is a heuristic indi-
cating how much the classes overlap with each other. We decrease λ for the databases with
more classes to prevent over-pruning, because given the same λ, the same training error rate
and the same training data size, the estimated error rate increases with respect to J as seen
in (32). For highly-overlapping databases, we increase λ to prune more nodes. The heuris-
tic V is computed as L/(JN), where L is the number of leaves in the fully grown tree.
Apparently, L increases with J and with N . When J and N are fixed, L is greater for the
databases with higher overlap among their classes. Our preliminary experiments based on
the Iris database show that λ0 can be set to 100, so that λ is approximately 0.5 for this data-
base. The details of the experiments on the Iris database are shown in Appendix A. Finally,
for CCP and EBP, the default parameters were used.

5.4 Results

5.4.1 Accuracy

The accuracy of the trees pruned by each algorithm is listed in Table 2. We show the mean,
the standard deviation and the t -test result of the 20 runs. We choose to call the difference
between two accuracies significant if the difference is above 1% (practically significant) and
the p-value of the t -test turns out to be at most 5% (statistically significant).

It can be seen that when the training ratio is small (5%), the 2-norm pruning algorithm
outperforms CCP 5 times out of the 14 database experiments, while CCP never outperforms
the 2-norm algorithm. The cause is that when the size of the training set is very small,



Mach Learn (2008) 71: 55–88 71

Table 2 Comparison of Tree Accuracy for CCP, 2-norm and EBP

R Database CCP 2-norm EBP 2-norm : CCP 2-norm : EBP

Mean Std Mean Std Mean Std Diff P ± Diff P ±

5 abalone 59.1 1.5 59.5 2.0 56.6 1.5 0.4 48.4 2.9 0.0 +
5 g2c15 83.4 1.1 84.7 0.9 82.5 1.1 1.3 0.0 + 2.2 0.0 +
5 g2c25 72.5 1.4 74.0 0.9 69.4 2.4 1.5 0.0 + 4.6 0.0 +
5 g6c15 79.7 1.3 79.2 1.4 78.8 1.7 −0.5 28.1 0.4 35.6

5 g6c25 69.4 1.1 69.4 1.4 68.1 1.2 0.0 97.5 1.3 0.2 +
5 kr-vs-kp 93.4 1.6 93.5 1.5 93.9 1.4 0.1 80.9 −0.4 43.0

5 letter 62.8 1.2 62.8 0.9 63.3 1.0 −0.1 81.4 −0.5 10.9

5 optdigits 70.2 1.7 71.7 1.9 72.0 2.1 1.5 1.3 + −0.3 58.9

5 pendigits 83.8 1.5 83.2 1.4 84.7 1.2 −0.6 23.0 −1.5 0.1 −
5 satellite 77.9 1.4 79.2 1.3 78.4 1.6 1.3 0.3 + 0.8 8.1

5 segment 85.5 2.6 86.2 2.4 86.8 2.4 0.7 38.8 −0.6 46.2

5 shuttle 99.7 0.1 99.6 0.1 99.7 0.1 −0.1 2.9 −0.1 0.0

5 splice 82.6 3.7 83.1 2.9 80.5 3.4 0.5 64.1 2.5 1.5 +
5 waveform 69.0 1.7 70.7 1.2 70.0 1.5 1.7 0.1 + 0.8 8.1

5 Summary 5 wins, 0 losses 5 wins, 1 loss

50 abalone 63.0 1.0 62.6 0.6 58.3 1.4 −0.4 19.2 4.3 0.0 +
50 g2c15 84.8 0.7 85.4 0.4 82.6 0.7 0.7 0.0 2.8 0.0 +
50 g2c25 74.4 0.8 74.4 0.7 71.6 1.0 0.0 99.3 2.8 0.0 +
50 g6c15 82.4 0.5 82.2 0.6 81.1 0.8 −0.1 50.9 1.1 0.0 +
50 g6c25 72.7 0.9 73.0 0.6 70.5 0.5 0.2 30.4 2.5 0.0 +
50 kr-vs-kp 99.1 0.2 98.5 0.6 99.2 0.2 −0.6 0.1 −0.7 0.0

50 letter 84.1 0.4 83.5 0.3 84.0 0.4 −0.6 0.0 −0.6 0.0

50 optdigits 88.1 1.0 87.9 0.8 88.3 0.8 −0.2 49.6 −0.4 16.9

50 pendigits 95.1 0.3 94.7 0.4 95.1 0.3 −0.4 0.1 −0.4 0.0

50 satellite 85.3 0.6 85.6 0.6 85.0 0.6 0.3 7.9 0.7 0.2

50 segment 94.0 1.0 94.2 0.7 94.6 0.6 0.1 60.9 −0.4 4.5

50 shuttle 99.9 0.0 99.9 0.0 99.9 0.0 0.0 7.8 0.0 9.2

50 splice 94.3 0.4 94.1 0.4 92.9 0.7 −0.2 15.1 1.2 0.0 +
50 waveform 75.8 1.0 76.5 0.6 75.0 0.6 0.8 0.5 1.6 0.0 +
50 Summary 0 wins, 0 losses 7 wins, 0 losses

• R is the training ratio (%)
• Mean and Std are the mean and the standard deviation, respectively, of the accuracy (%) over the 20 runs in
each database
• Diff is the difference of the mean accuracy between the 2-norm pruning algorithm and the one being
compared to
• P is the p-value (%) of the t -test of the 20 observations. It is the probability of the observations given that
the null hypothesis is true. Small values of P cast doubt on the validity of the null hypothesis
• ± is the comparison result. A comparison result is shown only when significant, that is, when |Diff| is at
least one (indicating practical significance) and P is at most 5% (indicating statistical significance). If the
result is significant and Diff is positive, “+” is shown (which means 2-norm wins); if the result is significant
and Diff is negative, “−” is shown



72 Mach Learn (2008) 71: 55–88

Table 3 Comparison of Tree Size for CCP, 2-norm and EBP

R Database CCP 2-norm EBP 2-norm : CCP 2-norm : EBP

Mean Std Mean Std Mean Std Diff P ± Diff P ±

5 abalone 6.9 5.2 9.5 3.2 43.2 5.8 2.6 6.3 − −33.7 0.0 +
5 g2c15 7.0 2.6 2.2 0.7 14.2 5.2 −4.9 0.0 + −12.0 0.0 +
5 g2c25 6.3 3.6 2.7 1.9 28.5 7.4 −3.6 0.0 + −25.8 0.0 +
5 g6c15 8.8 1.9 7.4 1.4 20.9 4.3 −1.4 1.2 + −13.5 0.0 +
5 g6c25 8.5 2.5 8.6 1.9 33.2 5.3 0.1 88.8 −24.6 0.0 +
5 kr-vs-kp 7.2 2.4 6.0 1.6 9.3 2.0 −1.2 6.8 −3.4 0.0 +
5 letter 171.9 81.9 232.2 11.0 279.4 8.6 60.3 0.2 − −47.2 0.0 +
5 optdigits 19.1 4.9 31.1 5.5 47.7 4.4 12.0 0.0 − −16.6 0.0 +
5 pendigits 39.8 13.3 36.6 3.5 55.6 4.7 −3.2 30.5 −19.0 0.0 +
5 satellite 9.0 4.0 17.5 3.3 34.6 4.0 8.5 0.0 − −17.1 0.0 +
5 segment 8.5 1.8 9.4 1.3 12.6 1.3 0.9 9.5 −3.3 0.0 +
5 shuttle 8.6 2.4 6.3 1.7 11.7 1.5 −2.3 0.2 + −5.4 0.0 +
5 splice 8.6 4.2 7.9 1.2 16.7 1.8 −0.7 48.1 −8.8 0.0 +
5 waveform 7.5 4.1 13.0 2.2 31.2 1.9 5.5 0.0 − −18.2 0.0 +
5 Summary 4 wins, 5 losses 14 wins, 0 losses

50 abalone 12.2 7.3 72.1 11.2 382.8 13.8 59.9 0.0 − −310.7 0.0 +
50 g2c15 10.6 7.2 2.0 0.0 114.0 15.3 −8.6 0.0 + −112.0 0.0 +
50 g2c25 13.0 6.4 25.0 17.7 230.2 26.6 12.1 0.7 − −205.2 0.0 +
50 g6c15 16.1 3.0 22.2 6.2 145.5 13.4 6.1 0.0 − −123.4 0.0 +
50 g6c25 13.0 4.2 32.2 8.6 256.0 19.6 19.2 0.0 − −223.8 0.0 +
50 kr-vs-kp 27.0 3.4 21.4 4.5 27.9 2.7 −5.7 0.0 + −6.6 0.0 +
50 letter 1283.8 28.4 1083.0 26.7 1294.1 25.9 −200.8 0.0 + −211.1 0.0 +
50 optdigits 94.3 16.1 128.4 7.7 210.9 11.0 34.1 0.0 − −82.5 0.0 +
50 pendigits 177.3 38.9 141.6 9.9 199.0 7.2 −35.7 0.0 + −57.4 0.0 +
50 satellite 44.8 17.6 96.3 7.4 221.5 10.3 51.5 0.0 − −125.2 0.0 +
50 segment 28.3 9.6 29.1 2.4 43.2 3.1 0.9 70.3 −14.1 0.0 +
50 shuttle 23.3 4.5 19.6 1.8 21.2 2.6 −3.7 0.1 + −1.7 2.7 +
50 splice 15.7 3.2 27.4 2.5 52.5 4.2 11.7 0.0 − −25.1 0.0 +
50 waveform 28.3 11.3 82.3 7.1 234.9 6.6 54.1 0.0 − −152.6 0.0 +
50 Summary 5 wins, 8 losses 14 wins, 0 losses

• R is the training ratio (%)
Mean and Std are the mean and the standard deviation, respectively, of the tree size (number of leaves) over
the 20 runs in each database
• Diff is the difference of the mean size between the 2-norm pruning algorithm and the one being compared
to
• P is the p-value (%) of the t -test of the 20 observations. It is the probability of the observations given that
the null hypothesis is true. Small values of P cast doubt on the validity of the null hypothesis
• ± is the comparison result. A comparison result is shown only when significant, that is, when |Diff| is at
least one and P is at most 5%. If the result is significant and Diff is negative, “+” is shown (which means
2-norm wins); if the result is significant and Diff is positive, “−” is shown

cross-validation is not quite reliable in evaluating the candidate pruned trees, because each
validation set has only 1/10 of the training data. We examined the error rate estimation of
cross-validation and our algorithm and it turns out that ours tends to be better. For example,



Mach Learn (2008) 71: 55–88 73

Table 4 Comparison of Elapsed Time for CCP, 2-norm and EBP

Database CCP 2-norm EBP

T1 T2 Inc T1 T2 Inc T1 T2 Inc

abalone 8.5E−2 1.5E+0 17.5 1.3E−4 7.6E−4 6.0 1.3E−3 3.0E−2 22.8

g2c15 2.6E−2 5.9E−1 22.5 1.1E−4 5.7E−4 5.4 7.7E−4 1.8E−2 22.7

g2c25 3.6E−2 8.1E−1 22.3 1.3E−4 8.6E−4 6.5 1.4E−3 3.9E−2 27.1

g6c15 3.3E−2 6.2E−1 19.1 1.1E−4 6.9E−4 6.1 8.5E−4 1.9E−2 22.1

g6c25 4.0E−2 7.8E−1 19.3 1.4E−4 1.0E−3 7.2 1.3E−3 3.2E−2 25.4

kr-vs-kp 3.6E−2 3.6E−1 10.1 7.3E−5 1.0E−4 1.4 8.1E−4 8.4E−3 10.3

letter 1.2E+0 1.5E+1 12.2 5.1E−4 2.8E−3 5.4 1.6E−2 2.5E−1 15.6

optdigits 5.7E−1 8.7E+0 15.3 1.2E−4 3.4E−4 2.9 1.4E−3 2.6E−2 18.3

pendigits 4.9E−1 6.8E+0 13.8 1.3E−4 3.7E−4 2.7 2.2E−3 3.8E−2 17.0

satellite 5.5E−1 9.3E+0 16.9 2.8E−4 4.2E−4 1.5 1.2E−3 2.9E−2 23.5

segment 8.2E−2 1.2E+0 14.4 6.3E−5 1.4E−4 2.2 3.6E−4 4.2E−3 11.7

shuttle 6.7E−1 2.0E+1 29.5 6.1E−5 8.9E−5 1.4 3.2E−3 1.0E−1 32.4

splice 9.8E−2 1.0E+0 10.2 7.9E−5 1.8E−4 2.3 1.3E−3 1.3E−2 10.0

waveform 2.6E−1 5.7E+0 21.7 9.3E−5 4.0E−4 4.3 9.5E−4 2.4E−2 25.4

• T1 and T2 are the mean of the elapsed time (seconds) in the 20 runs of the pruning algorithms for training
ratio = 5% and 50%, respectively
• Inc equals T2/T1
• All numbers are rounded to one digit after the decimal

on the database g2c15, the root-mean-square-error (across the 20 runs) between the esti-
mated CART error rate and the actual CART error rate is 4.45% for cross-validation and
is 2.15% for 2-norm estimation. On the other hand, when the training ratio is large (50%),
the 2-norm pruning algorithm has similar accuracy as CCP (neither one of these algorithms
outperforms the other for any database experiment).

The 2-norm pruning algorithm also outperforms EBP in accuracy regardless of the train-
ing ratio used (5 times when the training ratio is 5% and 7 times when the training ratio is
50%), primarily because EBP tends to under-prune (see Table 3).

5.4.2 Tree size

Although our primary goal is not to minimize the tree size but the error rate, we show the
size of the pruned trees in Sect. 3. The 2-norm pruning algorithm considers the estimated
error rate only, and thus the resulting size is sometimes larger than that of CART. We also
see (from Table 3) that C4.5 always generates larger trees than the other two.

5.4.3 Speed

The mean elapsed time (in seconds) of the three pruning algorithms is shown in Table 4.
For each algorithm, the elapsed time is very stable in 20 runs, and thus we do not show
the standard deviation that is negligible. For the same reason, and because the mean time is
quite different among the three algorithms, all comparisons are practically significant and
statistically significant.

Table 4 indicates that the 2-norm pruning algorithm is significantly faster than the other
two (at least hundreds of times faster than CCP and usually tens of times faster than EBP).



74 Mach Learn (2008) 71: 55–88

The reason is that the 2-norm pruning algorithm does not need any training examples to
be presented, and it finishes the tree optimization within one traversal of the tree. Although
most of the times reported in Sect. 4 are small, our experiments show the apparent advantage
of the 2-norm algorithm that is expected for huge databases and/or slow machines.

Our experiments also show that the 2-norm pruning algorithm scales better than CCP and
EBP. The Inc Columns in Table 4 show that when the size of the training set is increased
by ten times, the elapsed time of the 2-norm pruning algorithm is increased by less than ten
times, while the time of the other two algorithms is increased by more than ten times. The
explanation is as follows.

− Since the 2-norm pruning algorithm requires only one traversal of the fully grown tree
and the visit of each node has a constant number of operations, the time complexity of
the 2-norm pruning algorithm is Θ(M) where M is the number of nodes in the fully
grown tree, and usually M � N , where N is the number of training examples (in the
worst case, M = Θ(N)).

− The 10-fold cross-validation in CCP involves 10 times of tree growing (Stone 1978;
Breiman et al. 1984). When at least one numerical attribute is present, due to the sorting
involved, the time complexity of the growing phase is Ω(N logN), that is, Θ(N logN)

or higher; the worst case complexity O(N2 logN) is justified in Duda et al. (2000),
p. 406. When only categorical attributes are present, the time complexity is Ω(N). This
explains why CCP’s scalability is almost linear for the databases kr-vs-kp and splice
(which have only categorical attributes) but worse for other databases. Note that although
CART grows 10 trees and produces 10 corresponding pruning sequences, for each se-
quence CART does not have to evaluate all trees in the sequence with the corresponding
pruning set, but only the fully grown tree in the sequence in order to compute the error
rate for all its pruned trees. Therefore, the time of the evaluation step in CCP does not
have a higher order than the growing step.

− EBP passes the training examples through the tree to evaluate the grafting in each deci-
sion node. Grafting in EBP considers the following three cases: a) the split test is used
and the examples are dispatched to the subtrees; b) all examples are sent to the major
child; c) the decision node is pruned to a leaf. The training examples must be visited
to evaluate Option b) and thus the time complexity is Ω(N) (that is, it has a linear or
higher order; the worst case complexity O(N2) can be derived similarly to the growing
algorithm).

The speed comparison shows that the 2-norm pruning algorithm scales very well to large
databases. Apparently, we can assume that one traversal of the tree is necessary to find the
optimal pruned tree, that is, if a sub-tree is not visited, we do not have enough information
to decide whether to prune it. Therefore, the 2-norm pruning algorithm has the minimal time
complexity. No other algorithms can have a lower order of time complexity.

5.5 Additional experiments

5.5.1 Performance on large databases

To verify our previous statements about time complexity, we used 2 additional large data-
bases, g2c15 (artificial database) and covtype (UCI benchmark) to test the scalability of each
algorithm. For each database, the number of training examples starts from 512 and doubles
each time up to 524288 (= 219) examples. For g2c15, the number of test examples is always
the same as that of training examples; for covtype, the examples not used for training are
used for testing. This experiment is very time consuming, and thus is not repeated.



Mach Learn (2008) 71: 55–88 75

Fig. 4 Pruning Time of 2-norm, CCP and EBP on Large Databases (Gaussian database and Covertype data-
base) as the training set size increases

The speed difference shown in Fig. 4 between our algorithm and CCP and EBP is appar-
ent. The time required by our algorithm is linear in the size of these databases (because for
these databases, the size of the fully grown tree turns out to be linear in the size of the data-
base). At the same time, the time required by CCP and EBP increases non-linearly (note that
both axes have logarithmic scales, and a straight line (i.e., log(y) = 2 log(x)) may represent



76 Mach Learn (2008) 71: 55–88

a quadratic function in linear scale (i.e., y = x2). Therefore, for these two large databases
it is obvious that as the training set size becomes larger, the advantage of our algorithm is
more pronounced. For instance, when the training set size of the covtype database is 1024
patterns the 2-norm requires 0.0003 seconds, versus 0.013 seconds and 1.38 second required
by EBP and CCP, respectively. On the other hand for a training set size of 524,288 patterns
and the covtype database, the 2-norm algorithm requires 0.021 seconds, compared to 61.3
seconds and 2848 seconds required by EBP and CCP, respectively.

As shown in Fig. 5, for the two large databases, the accuracy of 2-norm pruning algorithm
is always similar to that of CCP, usually within 1%, and their tree sizes are also close.
Note that for g2c15, 2-norm and CCP always produces the same tree with only 2 leaves,
approaching the Bayes optimal classifier. EBP always produces the largest tree with no
significantly better accuracy (2% worse on g2c15) than CCP and 2-norm.

5.5.2 Comparison with EBP featuring a varying CF value

It has been shown that EBP’s accuracy can be improved by setting its CF parameter to very
small values (Hall et al. 2003). Although this setting does not yield a meaningful error rate
prediction, we tested these settings and compared to CCP and 2-norm pruning.

We used the real databases waveform and letter. We ran EBP, CCP, and our 2-norm
pruning for 20 times with different partitioning, using the approach shown in Fig. 3 with
m = 10. At each time, 50% of the data are used for training and the rest for testing. For 2-
Norm and CCP, only one parameter setting is applied. For EBP, the CF parameter is varied
as 100 × 2−i , i = 1,2, . . . ,20 (including the default value 25). The average accuracy among
the 20 runs is plotted against the CF value in Fig. 6.

Regarding EBP, the following observations can be made from Fig. 6:

1. The default value of CF does not necessarily maximize EBP’s accuracy;
2. The EBP accuracy is not necessarily a decreasing function of CF (that is, we cannot set

CF to extremely small values to obtain high accuracy);
3. Even when CF is optimized, EBP’s accuracy is lower than or close to 2-Norm and CCP

accuracy (for the databases shown in Fig. 6);
4. EBP’s size tends to decrease when CF decreases; even when CF is very small EBP’s size

is still comparable to the size of 2-norm and CCP.

The time of EBP does not change significantly with respect to CF. Hence, the time com-
parisons depicted in Table 4 for EBP, CCP and 2-norm are still valid, independently of the
CF value used.

5.5.3 Other databases

To compare our algorithm with other pruning algorithms (beyond CCP and EBP) we used
the results included in Esposito et al. (1997). In particular, we ran the databases in Esposito
et al. (1997) using the same protocol used there (70% of the data were used for training;
experiments were repeated 25 times). Many databases used in Esposito et al. (1997) have
missing values. At this stage, we do not consider missing values, and as a result we chose
only 4 of the databases considered in Esposito et al. (1997).

The results in Table 5 show that our 2-norm algorithm is competitive to the best algo-
rithms tested in the reference, in both accuracy and size. Our results also show that CCP’s
and EBP’s performance (see Table 5) is close to that presented in Esposito et al. (1997) (the
discrepancies are caused by the small size of the databases and the random factor in the
partitioning of the databases), so the readers can compare the performance of our algorithm



Mach Learn (2008) 71: 55–88 77

Fig. 5 Error Rate and Tree Size
of 2-norm, CCP and EBP on
Large Databases (Gaussian
Database and Covertype
Database) as Training Set Size
Increases



78 Mach Learn (2008) 71: 55–88

(a) Accuracy on waveform

(b) Tree size on waveform

Fig. 6 Comparison of Error Rate and Tree Size among 2-norm, CCP, and EBP with Varied CF Value on
Databases Waveform and Splice



Mach Learn (2008) 71: 55–88 79

(c) Accuracy on splice

(d) Tree size on splice

Fig. 6 (Continued)



80 Mach Learn (2008) 71: 55–88

Table 5 Error Rate (upper half) and Size (lower half) attained by various pruning algorithms (including CCP,
2-norm, and EBP) on small databases

Dataset CCP 2-norm EBP Min Ref Max Ref Med Ref

iris 6.04±3.11 6.22±3.32 5.96±3.00 5.07±0.63 11.67±2.62 5.78±0.57

glass 34.13±6.29 32.75±5.04 33.38±5.83 35.31±1.35 41.81±1.86 38.00±1.03

p.gene 22.63±4.36 23.13±5.34 24.63±7.06 21.75±1.40 25.62±2.25 23.88±1.81

blocks 3.24±0.33 3.27±0.37 3.33±0.34 2.98±0.10 3.75±0.16 3.22±0.11

iris 4.44±1.15 3.00±0.00 4.44±0.92 3.13±0.15 5.40±0.27 3.76±0.13

glass 9.76±5.91 12.32±2.37 29.92±2.74 7.04±0.80 28.72±0.58 18.52±1.09

p.gene 4.24±2.02 3.68±1.17 8.52±1.62 4.36±0.47 15.28±0.85 8.44±0.58

blocks 14.04±5.40 20.88±3.63 50.48±4.80 8.08±0.44 78.48±1.28 28.12±2.96

“Min Ref”, “Max Ref”, and “Med Ref” mean the minimum, the maximum, and the median value, respec-
tively, of the performances of the pruning algorithms reported in Esposito et al. (1997)

given in this paper to the performance of the other pruning algorithms given in Esposito et
al. (1997).

6 Summary/conclusions

In this paper, we proposed a k-norm pruning algorithm based on the tree error rate estima-
tion that takes into account both the expected value and the standard deviation of the error.
We provided a detailed derivation and interpretation for estimating the mean and standard
deviation of the error rate at each tree node, in a recursive fashion, on which estimation the
k-norm error pruning algorithm relies.

We performed a thorough and empirical comparison of our k-norm pruning algorithm
(for k = 2) against two other well-established pruning algorithms (CCP and EBP). The re-
sults showed that 2-norm is better in accuracy than CCP, especially for small training set
sizes, and it is better than EBP for small or medium training sizes. The results also show
the 2-norm algorithm creates smaller trees than EBP, while at times it creates smaller and
other times larger trees than CCP. One of the most pronounced advantages of the 2-norm al-
gorithm compared to CCP and EBP is that it requires less time to produce the pruned trees,
because it does not need to utilize additional data (training or validation) during pruning.
In particular, our experimental results demonstrated that 2-norm pruning is orders of mag-
nitude faster than CCP and EBP. More specifically, experiments with very large databases
show that 2-norm pruning scales better than EBP or CCP as the database size increases.

Finally, it is important to note that our approach can be extended by generalizing The-
orem 1 to other measures of interests like appropriate misclassification costs. Moreover,
k-norm error estimation can be applied for pruning in other classification models, whose
design involves partitioning of the input space.

Appendix A: Case study on Iris database

The Iris database is extensively examined in the literature. It can be downloaded from the
UCI repository (Newman et al. 1998). For visualization purposes, we only use two attributes



Mach Learn (2008) 71: 55–88 81

(petal length and petal width in cm), which have the most significant correlation to the
classes. Figure 7(a) shows a scatter plot of these two attributes for the Iris data. Each class
contains 50 examples, some of which are overlapped.

In this section we demonstrate how to apply the 2-norm estimation to the tree pruning
and the tree prediction with Iris database.

A.1 Tree construction

We used CART to grow a fully grown tree with the Gini Index as the impurity measure and
using Maximum Likelihood Estimation for the probability estimation. If we use the entropy
or the twoing rule to measure the split gain, we get exactly the same tree. The splits of the
fully grown tree are shown in Fig. 7(a). Note that an example of class versicolor (circle
marker) have exactly the same attributes as an example of class virginica (star marker).
CART attempted to separate the former from the class virginica by a vertical split, but then
it found out that no split could be found to handle the impure left region, and thus the
previous split remains as an ineffective one (a split that is not effective; see Theorem 2 for
the definition of effective splits).

A.2 Tree pruning

Both CART’s pruning (using 10-fold cross validation and 1-SE rule) and C4.5’s pruning
remove only the ineffective split. Now we focus on the error rate and apply our 2-norm
pruning algorithm. For simplicity, λ = η = 0.5. The optimal pruned tree is shown in Fig. 7(b)
and Fig. 8.

The optimal pruned tree can be evaluated as follows. For the leaf c21,

E[rc21 ] = 5 + 0.5 × 2

54 + 0.5 × 3
= 0.1081, (51)

E[r2
c21

] ≈ 6 × 7

55.5 × 56.5
= 0.01339, (52)

P ∗[Ac21 |Ac2 ] = 54 + 0.5

100 + 0.5 × 2
= 0.5396. (53)

For the leaf c22,

E[rc22 ] = 1 + 0.5 × 2

46 + 0.5 × 3
= 0.04211, (54)

E[r2
c22

] ≈ 2 × 3

47.5 × 48.5
= 0.002604, (55)

P ∗[Ac22 |Ac2 ] = 46 + 0.5

100 + 0.5 × 2
= 0.4604. (56)

For the decision node c2 (note that the event Aroot is always true, and thus P ∗[Ac2 |Aroot] =
P ∗[Ac2 ]),

E[rc2 ] = E[rc21 ]P ∗[Ac21 |Ac2 ] + E[rc22 ]P ∗[Ac22 |Ac2 ] = 0.07772, (57)

E[r2
c2

] = E[r2
c21

]P ∗[Ac21 |Ac2 ] + E[r2
c22

]P ∗[Ac21 |Ac2 ] ≈ 0.008427, (58)



82 Mach Learn (2008) 71: 55–88

F
ig

.7
Fu

lly
G

ro
w

n
T

re
e

an
d

Pr
un

ed
T

re
e

fo
r

Ir
is

da
ta

.(
a)

Fu
lly

gr
ow

n
tr

ee
fo

r
th

e
Ir

is
pr

ob
le

m
;

in
pu

t
at

tr
ib

ut
es

to
th

e
tr

ee
ar

e
on

ly
th

e
Ir

is
pe

ta
l

le
ng

th
an

d
Ir

is
pe

ta
l

w
id

th
;

C
A

R
T

w
ith

G
in

ic
ri

te
ri

on
is

us
ed

to
gr

ow
th

e
tr

ee
.(

b)
O

pt
im

al
ly

pr
un

ed
tr

ee
fo

r
th

e
Ir

is
pr

ob
le

m
,u

si
ng

as
a

cr
ite

ri
on

th
e

2-
no

rm
er

ro
r

ra
te

fo
r

pr
un

in
g

a
tr

ee
no

de



Mach Learn (2008) 71: 55–88 83

Fig. 8 The optimally pruned tree
for the Iris problem when the
2-norm error rate is used as the
criterion to prune tree nodes. In
this figure, the numbers of
examples of each Iris type
residing at every node of the tree
is shown. Furthermore, on top of
every link (connecting two tree
nodes) the criterion used to split
the data at the node is shown.
Tree nodes are designated as
root, or c; when the c designation
is used to denote a node the
associated subscripts indicate the
ancestry (e.g., c21 means the first
child of the second child of the
root)

P ∗[Ac2 ] = 100 + 0.5

150 + 0.5 × 2
= 0.6656. (59)

For the leaf c1,

E[rc1 ] = 0 + 0.5 × 2

50 + 0.5 × 3
= 0.01942, (60)

E[r2
c1

] ≈ 1 × 2

51.5 × 52.5
= 0.0007397, (61)

P ∗[Ac1 ] = 50 + 0.5

150 + 0.5 × 2
= 0.3344. (62)

For the root (representing the entire tree)

E[rroot] = E[rc1 ]P ∗[Ac1 ] + E[rc2 ]P ∗[Ac2 ] = 0.05822, (63)

E[r2
root] = E[r2

c1
]P ∗[Ac1 ] + E[r2

c2
]P ∗[Ac2 ] ≈ 0.005856, (64)

σ [rroot] =
√

E[r2
root] − E[rroot]2 ≈ 0.04966, (65)

‖rroot‖2 =
√

E[r2
root] = 0.07652, (66)

where E[rroot] is the expected value of the error rate and the standard deviation 0.04966
measures the uncertainty of the error rate; ‖rroot‖2 gives a 2-norm estimation of the error
rate (combining the expected value and the standard deviation). These measures are defined
for the average case. When an input X is given, we have more specific measures that depend
on X, as shown in the next subsection.



84 Mach Learn (2008) 71: 55–88

A.3 Tree prediction

We use the tree pruned with k = 2. If an unseen datum falls in the leaf c1 (left sub-region),
the predicted class is “setosa,” with the predicted error rate and the corresponding reliability
computed as follows:

EP[r] ≈ E[rc1 ] = 0.01942, (67)

σP[r] ≈
√

E[r2
c1

] − E[rc1 ]2 = 0.0190. (68)

To combine the standard deviation into the estimate of the error rate, we can use the 2-norm:

‖r‖2 ≈
√

E[r2
c1

] = 0.0272. (69)

Similarly, if an unseen datum falls in the leaf c21 (bottom-right sub-region), the predicted
class is “versicolor,” with the following predicted error rate:

EP[r] ≈ E[rc21 ] = 0.1081, (70)

σP[r] ≈
√

E[r2
c21

] − E[rc21 ]2 = 0.04131, (71)

‖r‖2 ≈
√

E[r2
c21

] = 0.1157. (72)

If an unseen datum falls in the leaf c22 (top-right sub-region), the predicted class is “vir-
ginica,” with the following predicted error rate:

EP[r] ≈ E[rc22 ] = 0.04211, (73)

σP[r] ≈
√

E[r2
c22

] − E[rc22 ]2 = 0.02884, (74)

‖r‖2 ≈
√

E[r2
c22

] = 0.05103. (75)

Appendix B: Proof of Theorem 1

Our goal is to prove the following equation for any decision node d and any event Φ:

EX|Ad
[rk

d ] =
∑

c∈Children(d)

EX|Ac [rk
c ]P [Ac|Ad ], (76)

where

rd = P [Φ|Ad,X], (77)

given that the events {Ac|Ad}c∈Children(d) are mutually exclusive and collectively exhaustive
and that P [Ac|Ad,X] is either zero or one for any X.

Proof Recall that for any c ∈ Children(d), Ac implies Ad , which means Ac = (Ac,Ad). As
a result,

P [Φ|Ad,X] =
∑

c∈Children(d)

P [Φ|Ac,X]P [Ac|Ad,X], (78)



Mach Learn (2008) 71: 55–88 85

that is,

rd =
∑

c∈Children(d)

rcP [Ac|Ad,X]. (79)

Since P [Ac|Ad,X] is one for one of the children and is zero for the other children,

P [Ac1 |Ad,X]P [Ac2 |Ad,X] = 0, if c1 	= c2, (80)

P [Ac|Ad,X]k = P [Ac|Ad,X], (81)

and therefore,

rk
d =

∑

c∈Children(d)

rk
c P [Ac|Ad,X], (82)

EX|Ad
[rk

d ] =
∫

rk
d f (X|Ad)dX

=
∑

c∈Children(d)

∫
[rk

c ]P [Ac|Ad,X]f (X|Ad)dX. (83)

According to Bayesian Theory,

P [Ac|Ad,X]f (X|Ad) = f (X|Ac,Ad)P [Ac|Ad ] = f (X|Ac)P [Ac|Ad ], (84)

and therefore,

EX|Ad
[rk

d ] =
∑

c∈Children(d)

∫
[rk

c ]f (X|Ac)dXP [Ac|Ad ]

=
∑

c∈Children(d)

EX|Ac [rk
c ]P [Ac|Ad ]. (85)

�

Appendix C: Proof of Theorem 2

The 1-norm error rate of the node t before the split is

rleaf(t) = bt + (J − 1)λ

nt + Jλ
, (86)

where bt is the number of training examples in t of minority classes (that is, the number of
misclassified training examples in t ), and bt = nt − maxj nj,t . After the split,

rtree(t) =
∑

c∈Children(t)

rleaf(c)
nc + η

nt + Ktη
. (87)

Our goal is to prove rtree(t) < rleaf(t) under the following assumptions:

1. The Determinacy Assumption. Under this assumption, when the number of misclassifi-
cations is decreased, the decrease is at least one, that is,

∑
c∈Children(t) bc ≤ bt − 1.

2. 0 ≤ η ≤ λJ .



86 Mach Learn (2008) 71: 55–88

3. λ ≤ 1
(Kt −1)(J−1)

.

Proof Note that rleaf(t) is independent of η. We first find the maximum value of rtree(t) with

respect to η

∂

∂η

∑

c

(bc + (J − 1)λ)(nc + η)

(nc + Jλ)(nt + Ktη)
=

∑

c

(bc + (J − 1)λ)(nt − Ktnc)

(nc + Jλ)(nt + Ktη)2

= q

(nt + Ktη)2
. (88)

Note that q is independent of η and thus the sign of the above derivative is independent of η,

which means that the maximum value is achieved either when η = 0 or when η = Jλ. It

suffices to prove the theorem for these two cases.

Case η = 0:

rtree(t) = 1

nt

∑

c∈Children(t)

nc(bc + (J − 1)λ)

nc + Jλ

<
1

nt

∑

c∈Children(t)

nt (bc + (J − 1)λ)

nt + Jλ

≤ bt + Kt(J − 1)λ − 1

nt + Jλ

≤ bt + Kt(J − 1)λ − (Kt − 1)(J − 1)λ

nt + Jλ

= bt + (J − 1)λ

nt + Jλ

= rleaf(t). (89)

Case η = Jλ:

rtree(t) =
∑

c∈Children(t)(bc + (J − 1)λ)

nt + KtJλ

≤ bt − 1 + (J − 1)Ktλ

nt + KtJλ

<
bt

nt + Jλ
+ (J − 1)Ktλ − 1

nt + KtJλ
. (90)

Given 0 ≤ λ ≤ 1
(J−1)(Kt −1)

, it is not difficult to prove that

(J − 1)Ktλ − 1

nt + KtJλ
<

(J − 1)λ

nt + Jλ
, (91)

and thus rtree(t) < rleaf(t). �



Mach Learn (2008) 71: 55–88 87

Acknowledgements This work was supported in part by the NSF grants: 0203446, 0341601, 05254209,
0647120, 0647018, 0717680, and 0717674.

References

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.
Belmont: Wadsworth.

Cestnik, B., & Bratko, I. (1991). On estimating probabilities in tree pruning. In EWSL-91: Proceedings of the
European working session on learning on machine learning (pp. 138–150). New York: Springer.

Chernoff, H. (1952). A measure of asymptotic efficiency of tests of a hypothesis based on the sum of obser-
vations. Annals of Mathematical Statistics, 23, 493–507.

Dong, M., & Kothari, R. (2001). Classifiability based pruning of decision trees. In IJCNN (Vol. 3, pp. 1739–
1743).

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Hardcover: Wiley-
Interscience.

Elomaa, T., & Kääriäinen, M. (2001). An analysis of reduced error pruning. Journal of Artificial Intelligence
Research, 15, 163–187.

Esposito, F., Malerba, D., & Semeraro, G. (1997). A comparative analysis of methods for pruning decision
trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476–491.

Freund, Y. (1998). Self bounding learning algorithms. In COLT: Proceedings of the workshop on computa-
tional learning theory. San Mateo: Morgan Kaufmann.

Good, I. J. (1965). The estimation of probabilities: an essay on modern Bayesian methods (No. 30). Cam-
bridge: MIT Press.

Good, I. J. (1967). A Bayesian significance test for multinomial distributions. Journal of the Royal Statistical
Society, Series B (Methodological), 29(3), 399–431.

Hall, L. O., Bowyer, K. W., Banfield, R. E., Eschrich, S., & Collins, R. (2003). Is error-based pruning re-
deemable? International Journal on Artificial Intelligence Tools, 12(3), 249–264.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the Ameri-
can Statistical Association, 58, 13–30.

Kääriäinen, M., & Elomaa, T. (2003). Rademacher penalization over decision tree prunings. In N. Lavrac,
D. Gamberger, L. Todorovski, & H. Blockeel (Eds.), Lecture notes in computer science (Vol. 2837,
pp. 193–204). Berlin: Springer.

Kääriäinen, M., Malinen, T., & Elomaa, T. (2004). Selective Rademacher penalization and reduced error
pruning of decision trees. Journal of Machine Learning Research, 5, 1107–1126.

Kearns, M. J., & Mansour, Y. (1998). A fast, bottom-up decision tree pruning algorithm with near-optimal
generalization. In ICML ’98: proceedings of the fifteenth international conference on machine learning
(pp. 269–277). San Francisco: Morgan Kaufmann.

Kijsirikul, B., & Chongkasemwongse, K. (2001). Decision tree pruning using backpropagation neural net-
works. In IJCNN (Vol. 3, pp. 1876–1880).

Kohavi, R., Becker, B., & Sommerfield, D. (1997). Improving simple Bayes. In M. van Someren & G. Widmer
(Eds.), Lecture notes in computer science (Vol. 1224, pp. 78–87). Berlin: Springer.

Krichevskiy, R. E. (1998). Laplace’s law of succession and universal encoding. IEEE Transactions on Infor-
mation Theory, 44(1), 296–303.

Lidstone, G. J. (1920). Note on the general case of the Bayes-Laplace formula for inductive or a posteriori
probabilities. Transactions of the Faculty of Actuaries, 8, 182–192.

Mansour, Y. (1997). Pessimistic decision tree pruning based on tree size. In Proceedings of the 14th interna-
tional conference on machine learning (pp. 195–201). San Mateo: Morgan Kaufmann.

Mansour, Y., & McAllester, D. A. (2000). Generalization bounds for decision trees. In COLT ’00: proceed-
ings of the thirteenth annual conference on computational learning theory (pp. 69–74). San Francisco:
Morgan Kaufmann.

Mehta, M., Rissanen, J., & Agrawal, R. (1995). MDL-based decision tree pruning. In KDD (pp. 216–221).
Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.

Available from http://www.ics.uci.edu/~mlearn/MLRepository.html.
Niblett, T., & Bratko, I. (1986). Learning decision rules in noisy domains. In Proceedings of expert systems

’86, the 6th annual technical conference on research and development in expert systems III (pp. 25–34).
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Mateo: Morgan Kaufmann.
Quinlan, J. R. (1999). Simplifying decision trees. International Journal of Human-Computer Studies, 51(2),

497–510.
Ristad, E. S. (1995). A natural law of succession (Tech. Rep. No. TR-495-95). Princeton University.



88 Mach Learn (2008) 71: 55–88

Stone, M. (1978). Cross-validation: a review. Mathematics, Operations and Statistics, 9, 127–140.
Vardeman, S. B., & Jobe, J. M. (2001). Basic engineering data collection and analysis. Brooks/Cole Thomp-

son Learning.
Windeatt, T., & Ardeshir, G. (2001). An empirical comparison of pruning methods for ensemble classifiers.

In IDA ’01: proceedings of the 4th international conference on advances in intelligent data analysis
(pp. 208–217). London: Springer.

Zemanian, A. (1987). Distribution theory and transform analysis: an introduction to generalized functions,
with applications. New York: Dover.


	A k-norm pruning algorithm for decision tree classifiers based on error rate estimation
	Abstract
	Introduction
	Motivation of our work
	Maximum likelihood estimation
	Posterior estimation
	k-norm estimate

	Preliminaries
	Decision trees
	Probabilistic view of tree classification
	Discussion 

	Lidstone's law of succession

	Error rate estimation-k-norm pruning algorithm
	Terminology
	Partitioning theorem
	An example
	k-norm estimation in tree pruning-k-norm pruning algorithm
	Application in tree prediction

	Experiments
	Test procedure
	Databases
	Parameters
	Results
	Accuracy
	Tree size
	Speed

	Additional experiments
	Performance on large databases
	Comparison with EBP featuring a varying CF value
	Other databases


	Summary/conclusions
	Appendix A: Case study on Iris database
	Tree construction
	Tree pruning
	Tree prediction

	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


